
Axel Angel Report

Bachelor Semester Project Report at École Polytechnique Fédérale de Lausanne
LGG (Computer Graphics and Geometry Laboratory)

Real-Time Procedural Planet with OpenGL

Abstract
The goal of this project is to to demonstrate how to generate procedural planets in real-time on recent hardware

with a reasonable compatibility among the current hardware using OpenGL 3.
We present the necessary knowledge and techniques to achieve our results. This project implements Perlin

noise, Fractional Brownian Motion (fBm) and a variation of ROAM; and it uses GLSL shaders. We will show
how we combine level of detail with procedural methods to achieve real-time rendering with a limited amount of
memory. We present the method to use noise to build planets.

1 Introduction

The problem of generating procedural planets is challeng-
ing because they have enormous sizes and complex fea-
tures. The set of data required to describe such objects
accurately are quite high, thus we can use procedural algo-
rithms to generate them. Nowadays procedural methods
allows us to render entire planets at the level of details
needed to be credible. In this project we develop a solu-
tion for this problem.

We begin in Section 3 with a small explanation of the
base code we chose for developing our project. We briefly
compare some widespread frameworks and argument why
we decided to only use small libraries.

Then we speak about the algorithms that calculate
the features of our planets (like the height and the choice
of textures). They rely on noises and interpolations with
some optimizations for real-time generation such as Real-
Time Optimally Adapting Meshes (ROAM). Noises will
be discussed in Section 5 in which we talk about building
noise signals from pseudo-random functions. From there
we build more interesting patterns with Perlin noise used
as a basis function for fBm. We then explain how we use
these methods for the contents.

In Section 6 we talk about Real-time optimizations.
LOD, ROAM and the variation of ROAM, we call SRAM,
will be explained deeply. We will see about their uses and
how they work in our project. The real-time constraint
of our project lead us to work on optimizations, they are
detailed in this section.

Finally we will conclude with our results along some
screenshots in Section 7 and then we give our final words
in Section 8.

2 Related Work

For the procedural content generation we used the famous
work of Ken Perlin on noises[Per99]: the Perlin noise. We
used the implementation described in Musgrave’s paper
[Mus00]. It is based on a gradient-type noise which uses
a noise basis (like Perlin Noise) and fractional Brownian
motion (fBm). The paper develops how to generate and
render realistic and real-time flat terrain. For spherical
landscapes a recent paper [DGGK11] discussed how to
generate rivers on a procedurally generated planet. They
incorporated their computations inside the terrain level

of detail procedures. We tried to use their work but some
important details were missing especially in the way they
compute heights for their different cases.

The level of detail (LOD) algorithm required for dis-
playing the planet mesh was inspired by Real-time Opti-
mally Adapting Meshes (ROAM). It is based on the orig-
inal paper [DWS+97]. This work was initially designed
for flat terrain, it was adapted to the sphere shape by
Sean O’Neil [O’N01]. Although his work was written as
a few pages in blog articles, it had formalism and enough
details to be implemented. That’s the reason we decided
to continue some of his work. His articles describe how
he adapted the initial ROAM algorithm by bootstrapping
the mesh from a cube and how the new algorithm starts
from this point. At the time of the article, shaders were
not available yet, thus he could not configure the graph-
ical pipeline and make computations on the GPU, thus
he generated vertices and textures on the CPU side using
fBm with Perlin noise. Several years later when shaders
became available he focused his attention on atmospheric
scattering.

Another related work not published as a paper but as
few small blog articles explains the enormous effort to cre-
ate a planetary engine [Bre13]. It can generate Earth-like
and other variety of planets. The published posts describe
for example: how to manage textures, how to generate
them, give some insights on how to texture a planet and
discuss some performance problems. Unfortunately the
sources are not available (because the project is commer-
cial) and the articles enter superficially over the details
but we found there some valuable materials. The results
are quite impressive and may even be state-of-the-art of
planet generation and rendering in real-time. The tech-
niques they use for example are: fBm, multi fractal noise
and Voronoi diagrams on the GPU, some noise like: the
Diamond-Square algorithm for the heightmap and a tons
of shader effects like: depth of field, atmosphere scatter-
ing, shadow mapping, parallax mapping and a lot of their
homemade heuristics. Their work has begun more than
five years ago.

3 Project Setup

The C++ language was chosen because it offers good
generic data structures (list, hashmap, tree), is quite effi-
cient (nearly as fast as C), offers a good abstraction level

June 7, 2013 Page 1 of 9



Axel Angel Report

(Object oriented paradigm) and finally it is widely used
standard, which enables one to choose among a wide se-
lection of libraries and frameworks.

We then decided whether to use a framework, some
smaller libraries or to write all from scratch.

3.1 Framework
There are a few generic engines that offer a great level of
abstraction. We looked at a few of them and decided to
compare them to choose a candidate to use in the project:

Ogre: A framework oriented towards scene and real-time
rendering. It is open-source, has an active commu-
nity and is multi-platform. It offers great facilities
for rendering and managing scenes with meshes and
there are procedural libraries integrated. The docu-
mentation is huge and we considered that the learn-
ing curve to correctly use this framework during the
semester was too important.

Unity3D: A cross-platform framework made for video
games. We consider this engine not a valid solution
for us due to its licence (proprietary) which would
have forced us to blindly accept the results and we
would have not been able to fix any error as the
sources are not distributed.

Irrlicht: A cross-platform framework. It is a small and
yet young framework but does not offer official inte-
grated procedural libraries and we prefer not to rely
on unofficial content for this project which may not
be properly tested.

Microsoft XNA: A set of tools oriented towards video
game development. We cannot consider this as a
valid choice for us because there is no official sup-
port for OpenGL.

After considering these frameworks we were not con-
vinced to use one for this project. We searched libraries
for vectors, matrices and other elementary operations
used in computer graphics. As a result we were fully
in control of the graphic pipeline ourself and the curving
lines was greatly reduced due to the generality of these
tools. We found out that the OpenGL Samples Pack by
g-truc1 contains a lots of interesting samples to learn from.
We used another library called “LGL” for Light Graphic
Library“, it contains various math operations and useful
matrices.

3.2 OpenGL
We decided to use OpenGL for several reasons and will
briefly explain why we chose OpenGL 3.0 for this project.
The first point was its availability on nearly all plat-
forms in the market today: Windows, Mac, iOS, Linux,
this underlines the current API portability and popular-
ity. The second point was the experience in OpenGL
we accumulated during the studies at EPFL, we did not
spend time to learn another API, which in this case is Mi-
crosoft Direct3D, it was made only for Windows. More-
over OpenGL offered the same if not more recent fea-
tures than its counterpart Direct3D in the last versions
(OpenGL 4.3 at the time of writing).

We could have chosen the very last version of OpenGL
for our work, but it wasn’t practical for various reasons:
the lack of supported hardware it and weak documenta-
tion of the new features. Indeed the new cards supporting
that version may be quite expensive instead we wanted to
use our actual hardware (dating before 2011). Moreover
we do not needed the very last features that was offered
by the last OpenGL, except for the tessellation (that we
did not used). The advantage of choosing OpenGL 3.x
is good availability of documentations, such as books and
articles on the subject for nearly everything. And finally,
more low-end level cards like the integrated Intel cards
which support OpenGL 3 on recent laptops. This allows
us to run on a variety of platforms (at least Unix flavors,
Windows and even mobile systems like Android and iOS
with some adaptation).

4 Initial Work

Our last experience of OpenGL was with the fixed
pipeline, however we needed shaders and VBO for this
project. These ones are available since OpenGL 2, which
involved some learning. The details that need to be done
at some point were considered during this initial work,
for example: perspective projection matrix, shaders in-
stantiation and binding, vertex buffer object (VBO). We
decided to draw a basic square-shaped terrain to test the
first procedural algorithm: Perlin Noise with 2D-cosine
interpolation. We used static texture mapping and sim-
ple lighting based on the height of pixels. The resulting
Figure 1 is simple but it demonstrates the working of the
basic functionalities.

Figure 1: Basic 2D terrain test with one texture.

5 Procedural Generation

Procedural generation enables us to create a wide variety
of interesting objects based on some deterministic clev-
erly chosen algorithms (functions) and some input values
(seeds). The data given to the program is nearly null
thanks to the procedural functions. Moreover procedu-
ral objects can be detailed as desired by increasing the
sampling resolution of these algorithms. This allows near

1Website: http://www.g-truc.net/project-0026.html.

June 7, 2013 Page 2 of 9

http://www.g-truc.net/project-0026.html


Axel Angel Report

object to be drawn in a realistic manner in real-time while
far objects are drawn with lower details. This process is
made on the fly based on estimations of the required level
of details (LOD). The LOD is calculated depending on
the camera view and permits us to adjust polygons on
the fly.

In the following sections we briefly introduce in what
kind of projects noise were used and then we will explain
in more details how we compute noise in practice.

5.1 Perlin noise

In a computer graphics talk made in 1999, Ken Perlin
presented an algorithm [Per99] that produces a new type
of noise: the Perlin noise. The major difference with the
noises already available that time was its particular fo-
cus on rendering fire, smoke and clouds. When the Perlin
noise is combined itself with different scales – called a
fractal noise – one can obtain very fine-grained textures
with adjustable level of detail.

Perlin noise coupled with interpolation has been suc-
cessfully used in projects like video games (eg: to create
walls, grounds, clouds with more random details), graph-
ics demos (eg: procedural planets, smoke). As our project
is a real-scale planet it is the right algorithm to choose be-
cause it can be tweaked easily and is efficient for real-time
generation. Moreover the general idea behind the fractal
Perlin noise is quite simple and easily done either on the
CPU or the GPU.

To compute a point ~x ∈ Rn of the Perlin noise we first
sample the 2n integral neighbors of ~x of a pseudo-random
integral function, f : Nn → N, then we interpolate the
values. For the 3D case, we need to evaluate f at 23 = 8
points then we can use a trilinear cosine interpolation to
“combine” the 8 values to get the value of f at ~x as if f
was a smooth function.

5.2 Fractional Brownian Motion

The purpose of the fBm noise or the Fractional Brown-
ian Motion is to sample multiple times a basis function
like the Perlin noise in order to increase the details of the
output at different scales.

The actual computation of the Perlin noise with fBm
can be summarized by the formula [Mus00]:

f(~x) =

N∑
i=0

H−ib(f i~x)

where the noise settings are as follows:

N is the number of octaves (or dimensions). This is
the number of times the basis function is sum-
weighted2.

H is the persistence (or the lacunarity). This is the
amount by which we divide the amplitude for every
octaves, thus giving less weight to greater octaves.

b is a basis function. This is the interpolated noise func-
tion we sample.

f is the frequency. This is the factor by which the sam-
pling point is compressed, thus greater octaves are
more “noisy” than smaller octaves which are more
“smooth”.

Thus to have the desired results we need to tweak the
noise settings that give the best results. Note that the
output of f should be normalized, this is more convenient
for later uses. We give an example for 1D noise in Fig-
ure 2.

Figure 2: A weighted sum of a basis function.

Note that the number of dimensions of ~x can be arbi-
trary large as noted by Ken Perlin, it is completely gen-
eralizable to any dimension. In practice we often use it
in 2 or 3 dimensions. In this project we began by the 2D
version for the flat terrain, then we moved to the more
complex 3D version for the planet generation.

5.3 Content

In this subsection we explain how the noise was actually
used to give interesting features to the planet. The rea-
sons we use noise for content generation is twofolds. First
the amount of data needed by the program is very low,
it only needs the algorithms and some small input like
a seed. Secondly we can sample these algorithms at an
arbitrary precision on the fly, that means we can gener-
ate every features of the planet in real-time. Although
some computations can be very expensive leading to poor
performances, optimizations can partially fix this prob-
lem. We will come back on optimizations and for now we
discuss the theory behind the heightmap generation.

5.3.1 Planet Mesh

We begin by approximating a planet surface by the sur-
face of a perfect sphere. That is a simple 3D object with
a center ~c and a constant radius, R. We assume that the
planet radius has the same value regardless of the direc-
tion (the position on the surface) which is not true for
Earth for example (poles and equatorials have different
heights) because Earth is an oblate spheroid.

The next step is to add irregularities to the surface
such as mountains, hills, valleys, plains: difference of
height, thus in slopes of the terrain but we need to keep
some coherence in the shapes. To achieve this goal we use
the aforementioned fBm noise which has both irregulari-
ties and coherence in the output as a perturbation of the
radius. These perturbations should be small compared to
the radius. To achieve this we weight these irregularities
by a constant factor that we call the (maximum) height,
H << R, of the planet. The height perturbation is de-
scribed by: δ(~x) = Hf(~x), where f is the fBm noise in
our case. Therefore the total height is: h(~x) = R+ δ(~x).

In our project, this vector ~x is of dimensions 3 and
represents a direction. This means the noise is always

2We decided to present the integer-version but [Mus00] has a more general version where N ∈ R.

June 7, 2013 Page 3 of 9



Axel Angel Report

sampled on a unit-sphere. This is convenient because it
won’t depend on the chosen settings: like the planet ra-
dius or the maximum height. Moreover it must be said
that a sample is only calculated when it is needed for a
vertex, there is no precomputation and it is done on the
CPU and the mesh is stored in RAM (and duplicated in
the GPU memory).

5.3.2 Texturing

Once the triangles of the planet (made of vertices) is com-
puted, important features come from the textures applied
on the surface. There are multiple effects that are com-
bined in our project: we sample two predefined textures,
blend them and add a diffuse lighting shading. The set
of textures we took is a base of freely-available photos of
different materials3: fine gravel, flint rock, grass, moun-
tains, rock, sand and ice. We transformed them so they
can be tilable in all directions. We did not generate these
procedurally because we would have spend an important
time to generate such a variety of materials and moreover
we think we would have run too short on performance.
The major benefits would have been smooth transitions
on the entire surface and a bigger diversity at the expense
of a great loss of performance. To determine the textures
applied at a given pixel we lookup in a 2D table on the
GPU based on the height and the longitudinal coordi-
nate of the point. We have defined 2-dimensional tables
that tries to mimic the different zones of Earth (ice poles,
deserts, tropical and forests) by mapping a certain range
of height and polar coordinates to a particular textures.
This process is completely done on the GPU.

We use cube mapping to compute which pixel of the
texture to sample (imagine a cube surrounding the planet
then we project the ~x into the first face it crosses, it gives
us the 2D texture coordinate). Then with the two pixels
we blend them additively: we sample α the first and 1−α
the second texture, where α = P (ω~x) and where P is a
Perlin noise function and ω a constant factor that change
the scale of the blending “patches”.

Figure 3: Example of our texture blending with two ver-
sions of the sand textures.

Although heights are guaranteed to be continuous
along the planet surface, the polar coordinates are not.

Thus this gives multiple noticeable discontinuities around
the globe as shown in the leftmost figure 13. We in-
troduced a factor to displace the polar coordinates on
the GPU depending on the latitudinal coordinates using
our favorite noise: Perlin noise. On the same figure we
show how the displacement factor results in more natural
boundaries.

Two more visual features were added to give a more in-
teresting look to the planet: animated clouds and waters.
Although they look quite different the underlying algo-
rithm to generate them is the same: we use Fractional
Brownian Motion. The main difference is in the way the
color is derived from the noise value which is computed
from the pixel position. Both are mainly computed in the
fragment shader, they use a trivial fragment shader with
a little addition for the water vertex shader: it varies the
height with the time to give the impression of tides.

For clouds we use shades of grey directly based on the
noise value between 0 and 1 but elevated to some power,
in our case 8 was found by experimenting. This transfor-
mation reduces the number of low values, thus creating a
few brighter clouds.

For waters the derivation process is more complicated.
First it chooses between two cases: using a blue tone and
adding the noise value as a way to shade this color; or
it uses a predetermined color among a small list in order
to saturate some parts giving the impressions of shadows
and specular lighting. These choices are based on the
noise value itself whether they fit in a particular range of
values.

6 Real-Time

The term real-time is used to describe an interactivity
constrain such that the application should react to user
actions in a fluid manner. In our project that means we
should target a reasonable frame rate (FPS) so that the
user finds the experience smooth. One of our goal was to
target 60 frames per second on a modern graphic card,
we think the integrated graphic card are too limited to
achieve this goal. We chose that number because it is the
most common speed of vertical refresh of screens4. To
effectively attain this goal we had to find some optimiza-
tions. In this section we describe parts of the architecture
of the spherical ROAM algorithm and the optimizations
we used in general. The interested readers can dig into
the code for more details.

6.1 Level of Detail

The level of detail (or LOD) is a technique that decreases
the geometry complexity (aka: triangles) of a mesh as the
viewer moves far and increases it back as he moves nearer.
The goal is to draw and to send only a limited amount of
triangles to the GPU at once in order to increase the FPS.
This is possible because the viewer has a limited visibility,
thus he can barely see far triangles. By merging these tri-
angles into bigger ones the viewer will probably not notice
the the difference because the LOD keeps the number of
triangles near the camera high enough. There are some

3source: http://www.texturewarehouse.com/gallery/.
4source: https://en.wikipedia.org/wiki/Refresh_rate.

June 7, 2013 Page 4 of 9

http://www.texturewarehouse.com/gallery/
https://en.wikipedia.org/wiki/Refresh_rate


Axel Angel Report

notions that need to be introduced like an error metric on
triangles to decide when to merge or split triangles and
an algorithm that perform these two operations.

6.1.1 Real-Time Optimally Adapting Meshes

The ROAM algorithm introduces these two notions of er-
ror metrics and split/merge and we will briefly describe
the way used in the reference paper [DWS+97] as our goal
is not to replace this paper, we will only highlight the im-
portant points we used in this project. We have used
ROAM because it is a popular choice for terrain render-
ing (one reason is its simplicity and another one is its
efficiency), its design works well with procedural content
generation and it is quite well documented.

The original ROAM algorithm works with triangles
and diamonds, the two operations are: split on triangles
and merge on diamonds as shown on Figure 4. A diamond
is a particular configuration of triangles such that four tri-
angles form a square where the shared middle point is op-
posite to the hypotenuse side of the triangles, thus when a
diamond is merged (from four to two triangles) the conti-
nuity of the terrain is guaranteed. When we split a couple
of triangles, a new point (midpoint) appears which offset
is computed with the noise value at this position. These
two operations were designed to be simple and efficient.

Figure 4: Split and merge operations (source:
[DWS+97]).

The other important point of the paper is the error
metrics used to decide when these two operations should
take place. Although there are more complex metrics we
chose a simple one for efficiency: our error is e(·) = ε/δc

where ε is the height error, δ is the distance from the
object to the camera and c is a constant found experi-
mentally. The δ is calculated as follows: for a triangle
we take the offset by which the split would elevate the
middle longest edge, for a diamond we take the offset by
which the merge would lower the middle shared point.
Then given a triangle or a diamond we decide to split or
merge respectively if the e(·) of this object is greater or
lower respectively than a threshold C, which represents
the visual error we accept. It was chosen experimentally
by considering the number of triangles in the scene with
respect to the camera distance.

The ROAM algorithm is optimal because it uses two
queues: one for splitting and one for merging ordered
by priority. Indeed every frames, the ROAM algorithm
decided to perform the most important operations first,
therefore if it has to abort earlier (to guarantee a constant
FPS) it will output an optimal mesh for the time it was
given. Our approach is not optimal in this sense because
we don’t do these operations in the order of priority, in-
stead we iterate over the primitives and if we need to exit

earlier we keep track of where the algorithm stopped and
then in the next frame it will continue where it left. We
think the overhead needed to keep up to date the priority
of the triangles was too important, thus the paper pro-
poses some optimizations but we decided to completely
discard these ideas. Indeed we would have to recalculate
the priority of all primitives every time. We used our own
optimizations which are discussed below.

6.1.2 Spherical Real-time Adapting Meshes

There are some details that are specific to the spherical
nature of our algorithm (SRAM) which are discussed now.
As described by Sean O’Neil [O’N01] we start by approx-
imating a planet (very badly at first) by a cube with 6
faces, each formed by 2 triangles, thus for a total of 12
triangles, see Figure 12.

The algorithm keeps track of the three neighbors for
each triangle and the four triangles contained in each di-
amond. The split and merge operations stay the same as
the original ROAM but we work exclusively on neighbor
pointers. To split T : consider triangle T and its neighbor
whose longest edge is common to form a new diamond by
adding two more triangles; to merge: consider the four
triangles in the diamond and replace them by two big-
ger triangles. The information contained in each triangle
are: vertices, the neighbors information and its parents
(triangle and diamond if any).

We introduced multiple optimizations to ensure a con-
stant reasonable frame rate. The first one is to disable the
SRAM update when we are far of the planet. We speci-
fied an initial level of details which looks reasonable from
space. The second optimization is to stop the SRAM up-
date when a certain amount of time has passed since the
frame computation started, in our case 15 ms. The third is
to discard primitives based on their spatial location with
respect to the camera. More precisely we defined eight
quadrants and assigned each triangle to a single quad-
rant. We consider triangles for update only if they are
in the same quadrant as the camera, thus we skip easily
more than one eighth of primitives. One complementary
optimization is memoization of the noise function, that
is: caching the values of a function into a table. We will
discuss the impacts on performance in Section 7.

6.2 OpenGL Real-Time Rendering

We now discuss the low-level details required to draw our
planet along some optimizations that were necessary due
to the inefficiency of our first implementation in order to
achieve our target FPS.

6.2.1 Buffers

To render any object with OpenGL 3 we need5 to use a
Vertex Buffer Object (VBO) which is a memory buffer
stored on the GPU for storing anything like primitive po-
sitions, texture coordinates or even any custom value per
vertex. We way to fill this GPU memory is by streaming
the geometry through OpenGL which will manage the
low-level parts for us. Our planet is no exception there-
fore we store every vertices of the triangles into a unique

5In fact we could have used Vertex Array (VA) but they offer lower performance.

June 7, 2013 Page 5 of 9



Axel Angel Report

VBO that we can draw with a single call. More precisely
we use a position (3 floats), a normal (3 floats) and a noise
value (1 float) per vertex.

The problem that arises with the use of a single VBO
is the way we manage changes due to the SRAM algo-
rithm on the triangles. In the first implementation we
were resending the whole VBO, that is all the primitives,
every frames. This naive way sets a performance bottle-
neck, thus we had to find a better way to incrementally
send the geometry which leads us to a brief overview of
the methods we tested.

The first improvement in performance was that we
misused glBufferData. This function initializes a VBO
memory each time it is called. We used this function in
the drawing loop, thus filling the buffer and especially cre-
ating a new buffer each time. We moved this function into
the initializing part (called once) and used glSubData in-
stead to update the data. This had an important impact
but it was not sufficient.

The second optimization was to incrementally update
the data by streaming the changes as they are done in the
SRAM algorithm. For that we first tried glSubData, that
was inefficient but gave us the advantage of being able to
choose more precisely when to stop our process. The sec-
ond try was to use a feature introduced in OpenGL 4 and
backported as an extension in OpenGL 3: glMapBuffer.
It maps a VBO (GPU-side) into the client memory (CPU-
side). This way we can map the buffer at the beginning of
a frame, make the changes into memory and then commit
at the end of the frame. Moreover we can give some us-
age hints addressed to OpenGL concerning this mapping:
we set a write only flag thus the driver can optimize even
more. One particular aspect of our implementation is that
we allocate the VBO at the beginning with the maximum
number of triangles and we draw the complete buffer ev-
ery frames and we make sure the unused triangles are null
or “empty”. By empty we mean that these triangles are
drawn at the origin with a size zero, thus they are invis-
ible. We found experimentally the cost of drawing null
triangles to be negligible. This little trick enables us to
have holes in our array otherwise we would have reim-
plemented a whole memory manager in our application
(segmentation and defragmentation of memory).

7 Results

In this section we present how our program performs in
practice on modern hardware and we discuss the impact
of the different optimizations we tried on the performance.
Then we presents screenshots that demonstrates the vi-
sual results we obtained with the presented methods. We
present the results on two machines where one is adapted
for demanding graphics and the other one uses an inte-
grated graphic card, see Table 5. We did the most tests on
the first machine and used the second one for our last test
on low-end/high-end hardware comparison. We summa-
rize the configuration the following tabular. We measured
the frame rate with respect to the number of triangles in
the scene on GNU/Linux. To ensure we can compare the
results we used a predefined path which is followed by
the camera then the program exits and prints the total

number of frames which we use as a performance mea-
surement. This path begins in space, flies longly through
the planet surface and ends in space again. We use a
window size of 1024 × 768 and we disable the frame-cap
in the SRAM if not specified otherwise. To measure the
FPS we used gDEBugger6 which is a free specialized soft-
ware to debug and capture the performance into graphs
in real-time.

High-end Low-end
Processor: Intel Q9450 Intel 2520M i5
Graphic card: NVIDIA 285 GTX Intel HD 3000
RAM: 6 Go 4 Go
Linux: 3.6.11 3.9.1

Figure 5: The machine configurations we used in our tests

7.1 Performance
We now talk about the performance of some important
optimizations we made in more details:

Partial update: The first implementation used a loop
that uploaded all geometry every frames but the
final version uses an incremental update: when tri-
angles are changed they are uploaded to the GPU
too. The total number of frame before was: 270
frames and now: 480 frames, gain of +77%.

Quadrant zones: The planet is split into height quad-
rants where one only one is updated based on the
camera position. We disabled clouds/water shaders.
Before: 438, after: 469, +7.1%.

Activation distance: When the camera is too far in the
final version we don’t even update the mesh of the
planet. We disabled clouds/water shaders. Before:
473, after 469, -0.85%. Note that in the predefined
test we don’t spend time in space thus this is the
impact of the distance test.

SRAM deadline: We implemented a system that ex-
its more early in the mesh update to guarantee a
greater frame rate. We stressed the deadline by
enabling all shaders. Before: 458, after: 637,
+39%. Our SRAM deadline target was set to 15
ms and 15.28 ms was attained in average with this
approach. The cost of having this test when shaders
are disable is 4.7%. This can be tweaked with an
internal constant.

Change internal DS: The planet is stored as three big
arrays of vertices, triangles and diamonds in a
data structure (DS). This DS is iterated over every
frames thus it is a sensible part for performance.
The initial design of this DS was a sparse array
(with holes) and we implemented a new version with
linked list, that allowed us to iterate only on used
entries. The impact was not predictable thus we
tested this change. In the end it was favorable. Be-
fore: 307, after: 403, a gain of +31.3%.

Some optimizations were clearly worth the effort accord-
ing to these results. In fact it depends on the utilization
of the planet. If it is used as a background object then

6official website: http://www.gremedy.com/.

June 7, 2013 Page 6 of 9

http://www.gremedy.com/


Axel Angel Report

the quadrant zones and especially the activation distance
are crucial although they are not for this test.

We present the performance of the different part of the
program. The number of triangles stays close to 207’000
triangles whereas the VBO was allocated for 400’000 tri-
angles. We plotted in Figure 6 the original performance
and multiple cases where we disabled one feature to see
its impact. We can clearly see the impact of the cloud and
water shaders whereas the SRAM has nearly null impact
(with the deadline enforcer). Moreover we see that the
SRAM deadline is essential to target a higher frame rate.

Figure 6: Performance in frame rate for multiple cases.
Black: all; grey: no SRAM deadline, blue: no SRAM,
red: no clouds/water.

We measured the different shaders alone and we came
to the following results. The clouds alone have an aver-
age FPS of: ∼ 760, water alone: ∼ 1500 and the planet
surface shader alone 54.06 FPS. Thus we conclude power
exponentiation (in the cloud shader) is more costly than
multiple if/else (in the water shader). Finally the planet
surface shader is the most costly of all our shaders without
surprise.

We plotted the CPU utilization on Figure 7 during
the same test capture. We can see a strange result: the
processor is more busy when SRAM is disabled. This
result may be explained by the fact that some synchroni-
sation mechanism in OpenGL happens at the end of the
planet mesh update (when we unmap the VBO buffer),
thus lowering the CPU utilization.

Figure 7: Use of the CPU. Black: all, grey: no SRAM
deadline, blue: no SRAM.

Finally we compare the frame rate between the two
machines in Figure 8. We enabled all features for this test.
As expected the integrated card performs worse than the
dedicated one. However the average frame rate, which is
∼ 30 FPS, is more than acceptable for interactivity.

Figure 8: Frame rate comparison. Black: first machine,
brown: second machine.

7.2 Screenshots

We present some screenshots of one planet from space to
the surface in Figures 9, 10, 11.

Figure 9: View of the planet from space

Figure 10: Aerial view of the planet

June 7, 2013 Page 7 of 9



Axel Angel Report

Figure 11: View of the planet surface

8 Conclusion
To conclude we developed a program to generate and draw
procedural planets in real-time nearly from scratch. We
learned valuable experience on shaders with OpenGL, on
the performance problems that arises in practice with the
compromise of computation on the CPU and the GPU
and we tested different approaches to build noise signals
and the way to use them. The resulting graphics are not
state-of-the-art but it has the advantage of running fairly
well even in more modest machines but running with a
good frame rate on more modern machines. Our target
frame rate of 60 FPS was not always attained on our high-
end machine but the interactivity is good enough in our
demo: above 40 FPS in average and stays over the cinema
standard (below 30 FPS) for both machines.

Unfortunately we lacked some time to add more inter-
esting features, besides clouds, water and planet texturing
with blending, such that: surface vegetations, atmosphere
scattering or a better shader for the planet surface with
for example rivers [DGGK11] or fully procedural textures.
Considering what can be done today [Bre13], our perfor-
mance could be improved especially in the SRAM algo-
rithm.

Finally we achieved some good results considering the
initial code and the goals. This project really gave us
valuable insights on procedural content generation and
ideas of all it can offer in practice.

Acknowledgements
As the last words we would like to thank: Prof. Mark
Pauly for accepting this project, Dr. Boris Neubert who
followed and helped us a lot and finally Luc Girod and
Regis Blanc who reviewed this report.

References

[Bre13] Flavien Brebion, Infinity development
blog, http://www.infinity-universe.
com/Infinity/index.php?option=
com_content&task=blogcategory&id=
0&Itemid=47, 2013, accessed 30-May-2013.

[DGGK11] Evgenij Derzapf, Björn Ganster, Michael
Guthe, and Reinhard Klein, River networks
for instant procedural planets, Computer
Graphics Forum 30 (2011), no. 7, 2031–
2040.

[DWS+97] Mark Duchaineau, Murray Wolinsky,
David E. Sigeti, Mark C. Miller, Charles
Aldrich, and Mark B. Mineev-Weinstein,
Roaming terrain: Real-time optimally
adapting meshes, Proceedings of the 8Th
Conference on Visualization ’97 (Los Alami-
tos, CA, USA), VIS ’97, IEEE Computer
Society Press, 1997, pp. 81–88.

[KCODL06] Johannes Kopf, Daniel Cohen-Or, Oliver
Deussen, and Dani Lischinski, Recur-
sive wang tiles for real-time blue noise,
ACM SIGGRAPH 2006 Papers (New York,
NY, USA), SIGGRAPH ’06, ACM, 2006,
pp. 509–518.

[LLC+10] Ares Lagae, Sylvain Lefebvre, Rob Cook,
Tony DeRose, George Drettakis, D.S. Ebert,
J.P. Lewis, Ken Perlin, and Matthias
Zwicker, State of the art in procedural noise
functions, EG 2010 - State of the Art Re-
ports (Helwig Hauser and Erik Reinhard,
eds.), Eurographics, Eurographics Associa-
tion, May 2010.

[Mus00] Kenton Musgrave, Procedural fractal ter-
rains.

[O’N01] Sein O’Neil, A real-time procedural uni-
verse, http://www.gamasutra.com/view/
feature/3042/a_realtime_procedural_
universe_.php, 2001, accessed 30-May-
2013.

[Per99] Ken Perlin, Making noise, 1999, Talk pre-
sented at GDCHardCore.

[sof13] VTP software, Artificial terrain gener-
ation, http://vterrain.org/Elevation/
Artificial/, 2013, accessed 30-May-2013.

June 7, 2013 Page 8 of 9

http://www.infinity-universe.com/Infinity/index.php?option=com_content&task=blogcategory&id=0&Itemid=47
http://www.infinity-universe.com/Infinity/index.php?option=com_content&task=blogcategory&id=0&Itemid=47
http://www.infinity-universe.com/Infinity/index.php?option=com_content&task=blogcategory&id=0&Itemid=47
http://www.infinity-universe.com/Infinity/index.php?option=com_content&task=blogcategory&id=0&Itemid=47
http://www.gamasutra.com/view/feature/3042/a_realtime_procedural_universe_.php
http://www.gamasutra.com/view/feature/3042/a_realtime_procedural_universe_.php
http://www.gamasutra.com/view/feature/3042/a_realtime_procedural_universe_.php
http://vterrain.org/Elevation/Artificial/
http://vterrain.org/Elevation/Artificial/


Axel Angel Report

Figure 12: Our spherical ROAM from cube to hexagons.

Figure 13: Comparisons between polar coordinates disrupted with an increasing factor of Perlin noise.

June 7, 2013 Page 9 of 9


	Introduction
	Related Work
	Project Setup
	Framework
	OpenGL

	Initial Work
	Procedural Generation
	Perlin noise
	Fractional Brownian Motion
	Content
	Planet Mesh
	Texturing


	Real-Time
	Level of Detail
	Real-Time Optimally Adapting Meshes
	Spherical Real-time Adapting Meshes

	OpenGL Real-Time Rendering
	Buffers


	Results
	Performance
	Screenshots

	Conclusion

