
Scala BlitzView
semester project report

Axel Angel
EPFL, Switzerland

axel.angel@epfl.ch

June 9, 2014

Abstract
Scala is a powerful language which currently
provides a built-in implementation for non-
strict views with some important shortcom-
ings for the users such as unexpected and
unintuitive behavior.
In this work we created a new library,

based on Scala Blitz, to provide lightweight,
non-strict and parallel-efficient collections.
We present the library API design, imple-
mentation and how programmers can use
and extend it.

1 Introduction
Scala is a powerful and fast-moving language
that fuses object-oriented programming with
a wide range of functional programming con-
cepts [6]. It runs on the JVM and a lot of
efforts were made to stay compatible with
Java and its ecosystem as much as possi-
ble. Scala itself provides an important num-
ber of libraries, for example Scala collection,
which implements Lists, Arrays, Maps and
Sets with immutable and mutable variants.
They are more in accord within the Scala en-
vironment than the Java collections, more-

over they provide the functional program-
ming concepts like constructors.

A View in Scala is a non-strict version
of some collection set. Non-strictness here
is a mean to postpone computations over
a collection until the final result is actually
needed, this type of view is called a proxy.
The View is said to be forced when the post-
poned computations need to be performed
over all the elements. A View captures the
operations that are postponed over its inner
collection in O(t) memory and stacks them
to provide efficient computation in a single
pass over the collection O(n), where t is the
number of transformers and n the number
of elements. In practice this is used when
multiple operations, such as multiple map
and filter, are called consecutively. In this
case, when the programmer uses regular col-
lections, linear-sized O(n) intermediate col-
lections are generated whereas the overhead
of Views is only proportional to the num-
ber of transformer operations O(t), generally
t << n. In our design, Views are reusable
because they are immutable, and performing
a new operation actually returns a new View
where all previous operations are captured
along the new one. Immutability means our

1

Axel Angel Report Scala BlitzView

View’s internal state never changes, all ver-
sions can be reused independently (as we will
show later) and what’s more important is
that Views do not depend on whether the
underlying collection is mutable or not. Im-
mutability greatly simplifies the implemen-
tation and opens new possibilities for the
programmer to combine and reuse Views in
his code.
Therefore a View allows programmers to

use special optimisations such as merging
these operations to compute them all at once
for each element of the inner collection. As
the operations are done element by element,
we can split the inner collections into a dy-
namic number of chunks and compute the
operations in parallel depending on the num-
ber of cores of the computer.
The design of the Views API is primor-

dial because it can greatly limit the opti-
misations, thus influencing the efficiency of
the computations as far as deciding whether
they can be done in parallel or not. There
exists two types of operations over Views:

Transformers: These can be postponed
and captured in the View without eval-
uating (forcing) the elements, e. g. map
and filter. Usually their type is
[a] -> [b].

Folders: These are the last operations that
actually force the View to be computed
and in general return a single element,
e. g. aggregate and max. Usually their
type is [a] -> b.

In this work, we focused on a powerful sub-
set of the actual Scala collections API to
preserve the efficiency of the Views while
providing very powerful and functional non-
strict collections.
We begin in section 2 by showing what

was done in the past, we explain what views

are in 3, we then describe our design in sec-
tion 4. We continue by demonstrating how
our Views are used in section 5 and how they
can be extended in section 6. Finally we con-
clude in section 7 with the source code in
appendix A.

2 Previous works
Scala and its collection offer a large toolbox
of functions taken from functional paradigm
such as flatMap and aggregate in a object-
oriented hierarchy of classes with common
interfaces. This collection interface is de-
clared in the parent class Traversable [4]
which is inherited by multiple types of col-
lection in order to provide a common API
that operates uniformly on all these dif-
ferent structures transparently for the pro-
grammer: whatever he uses is a List, an
Array, a Map, a LinkedList or any descent
of these classes, they all share this common
methods. The programmer has to learn and
understand it once, then he can use his expe-
rience for any of these collections easily: it’s
intuitive and greatly increases the produc-
tivity. The built-in collections in Scala are
strict in the sense that all operations are di-
rectly computed because Scala is a strict lan-
guage, although the programmer can specify
the lazy variable-keyword, this doesn’t solve
the problem optimally.
Since Scala 2.8, the Views have joined the

built-in toolbox to offer non-strict collections
using the common interface of collections.
They allow to create a proxy over a collection
that captures the operations on them un-
til an operation forces their execution. The
purpose of the proxy is to change the evalua-
tion strictness of the collections by handling
the computation itself when it sees fit. For
example a call to flatMap over a View re-

June 9, 2014 Page 2 of 11

Axel Angel Report Scala BlitzView

turns immediately whereas over a strict col-
lection this may take some time to return.
This is done by implementing all methods of
the collection interface in a way the opera-
tions are remembered and done when neces-
sary. The wrapper is kept to use non-strict
operations. Later, then the programmer can
force the conversion into a regular collection:
this is done by unwrapping the proxy after
the computations and filling a regular collec-
tion with the result. This design decision has
great advantages when it comes to people
experienced with Scala collections because
there is no external difference between them.
Unfortunately it has two important costs for
Scala in terms of the implementation and for
the programmer who expect consistent and
efficiently results. We will develop these as-
pects in section 3 and how we approached
differently the problem.
Independently, Scala added later Parallel

Collections to convert collections to parallel
variants in order to compute the operations
with multiple cores. The thin wrapper is
specialized on the underlying collection type;
most of the types require no change (con-
stant time) for this conversion. The wrapper
provides the same interface with the usual
collections, thus there is no difference again
in the code after the conversion. The pro-
grammer applies the methods as usual, then
he can call a method to convert back to the
regular collections (unwrapping).
Java 8 was recently released with a new

toolbox dedicated to functional program-
ming (e. g. lambda functions) and the new
package Stream. These concepts allow the
programmer to finally manipulate concisely
sequences with flatMap and the similar
functions well known in Scala. The con-
cept of Stream in Java 8 is different of the
Streams in Scala. The Java implementa-
tion called Stream is an implementation of

non-strict Views, they follow the definition
we gave earlier. Scala Streams are quite
different, they represent infinite and non-
strict sequences, they are usually defined
recursively and leverage memoization (e. g.
the Fibonacci sequence). Moreover the Java
Stream can be converted to a parallel vari-
ant as the Scala Views, the main difference
is that Java implemented a specialized ver-
sion only for Streams and the interface is
very different than the usual Java collec-
tions. Java Stream and Scala Views have
an important number of common methods
such as flatMap, find, min/max and the
like. They both wrap the inner structure and
require the programmer to call specific meth-
ods to unwrap, such as toArray, or when he
calls a folding method. They both require
to explicitly convert to non-strict versions
and then to parallelized variants if needed.
The main difference is that Java has severe
limitations with return values depending on
Generic types: this is visible for all vari-
ants of flatMap whose name is postfixed by
the type explicitly, e. g. flatMapToInt and
return a specialized type, e. g. IntStream.
An important problem with Java Stream is
the lack of transparent referenceability1 and
reusability. One case is after a terminal op-
eration (Folders) on a Stream: it cannot
be reused, it is consumed by the operation
(side-effect) and can never be reused. An-
other case is when Streams are combined to-
gether: the programmer cannot use the same
Stream twice in a row, for example with
concat. This limits greatly the combinato-
rial power of Streams as one needs to create
a new Stream for each new use whereas a
single View can be reused alone and be part

1An expression is said to be referentially trans-
parent if it can be replaced with its value without
changing the behavior of a program. – Wikipedia

June 9, 2014 Page 3 of 11

Axel Angel Report Scala BlitzView

of other Views.

3 Views
We now define the properties of Views and
describe the constraints we must satisfy in
our API based on the experience of the pre-
vious works.
As we said, Views are non-strict collec-

tions and they guarantee constant time and
constant memory for transformers. This is
possible because the View (the proxy that
wraps the underlying collection) remembers
all transformers the programmer requested.
As the computations are bookmarked into
the view’s internals, no change is actually
made to the inner collection, these only hap-
pen in the proxy. In the current Scala in-
frastructure, it was decided these Views are
immutable, thus each time a transformer is
applied on it, a new View is returned. Mul-
tiple advantages are offered this way: first
the programmer can rely on the immutabil-
ity, for example he can store multiple Views
over the same data without worrying about
side-effects on his original collection nor his
intermediate Views.
Views should be seen as an adaptor

over a collection where each element passes
through its pipeline made of operations (the
transformers) which are computed and are
collected by the last operators (the folder)
as they pass by. The choice of whether an
operation is a transformer or a folder will de-
pend on the internal implementation of the
library.
The problem that interests us in this

project was to overcome the limitations seen
in the current implementation of Views. One
such problem is due to the fact Views inherit
from the whole collection API which con-
tains all usual operations that were designed

to work on strict and mostly on sequen-
tial structures. Although operations such as
permutations and sorted make perfectly
sense for the usual collections, these op-
erations cannot be efficiently implemented
without actually forcing the View. Despite
this fact, this kind of operations is imple-
mented in Scala Views but unexpected re-
sults can happen sometimes leading to an
exception, the surprised programmer should
rather not use these methods at all.
xs.view.map{x => println (x); x}. sorted
// each number is printed
// it returns a View

The programmer may not expect the num-
bers to be printed now because he didn’t
request any result yet. However sorted is
forcing the View behind the scene and cre-
ate a new sorted View; this is an unexpected
and unintuitive behavior. In fact, other op-
erations share the same issue like groupBy,
intersect, sortBy and the likes.
There exist other operations that don’t

play nice when they are used on Views, and
this is a problem for programmers who ex-
pect the least surprise. For example flatten
does not return a flatten View but a new List
containing the result of the flattening, even
if we use Views inside and outside. This op-
eration should have been non-strict as well.
Other important problems with Scala

Views arise when we want to combine non-
strictness with Par-parallelism. The follow-
ing is permitted although it doesn’t have the
same intuitive behavior:
val xs = (0 to 1000). par.view
val ys = (0 to 1000). view.par

Which one is correct? Are they equiva-
lent? In fact they are not, worse, the first
loses its parallelism, while the second loses
its non-strictness. From these problems we
can see there is a lack of coordination be-
tween these APIs. Scala collections offer too

June 9, 2014 Page 4 of 11

Axel Angel Report Scala BlitzView

many methods that cannot be efficiently im-
plemented or that do not make sense in a
non-strict context. Moreover the combina-
tion of both Views and Par should be done
in a unified way to avoid these problems. We
have noticed a similar bad interaction be-
tween Views and Stream in Scala, it would
be better for the View API to disallow such
uses.

4 Design
In this work we propose an alternative imple-
mentation of Scala Views that solves the is-
sue of coordination between available meth-
ods and efficiency in non-strict and paral-
lelized context.
The first design decision we made is

to create a new interface, a trait, that
does not contain problematic methods.
There are different types of such meth-
ods: some are inherently sequential (e. g.
reduceRight), some require forcing the
View (e. g. ordered), some are inefficient
anyway (e. g. permutations) and some are
possible but trickier to implement (e. g.
takeWhile).
We focused our prototype on the most im-

portant ones:

• [a] -> [b]: map, filter which are
transformers.

• [a] -> b: aggregate is the most im-
portant. It is the building block for the
other folders such as min, sum, find,
exists, count which are folders.

The transformers are represented by the
trait ViewTransform[-A, +B], in our inter-
nal implementation; this is inspired by the
work of Martin Odersky in a prototype [5]
(inspired by Reducers of Rich Hickey [2]).

It represents a function from A to B where
A is contravariant and B covariant. This
trait is used to pipeline operations when we
are folding: we first apply the transformers,
then we apply the given folder (this is the
purpose of the method fold). The impor-
tant property of these transformers is that
they are recursive: a transformer can con-
tain another transformer and so on; this is
done with >>. In our design, there are three
types of transformers: Map, which applies
a function on each element, Filter, which
drops elements according to the given pred-
icate function, and Identity, which is the
identity transformer (this is used at the bot-
tom of the stack).
Here is the hierarchy of classes for our de-

sign:
BlitzView: The top trait that describes the

available operations (transformers and
folders) on all Views. It contains all the
methods we just discussed above.

BlitzViewImpl: The trait below that con-
tains most of our implementation. Any-
one is free to create a new implementa-
tion next to it, see section 6. This trait
inherits BlitzView and provides the
common implementation of all methods
for subclasses in terms of the method
genericInvoke. The children classes
then must only implement this method
to inherit all operations of this design.

BlitzViewC: The View that contains a sin-
gle underlying collection. This is the
class that is used as a proxy closest to
a wrapped collection and the one that
actually captures operations in a stack.
It inherits BlitzViewImpl.

BlitzViewVV: The View that concatenates
two Views together. When a new trans-
former is added, it is passed to the two

June 9, 2014 Page 5 of 11

Axel Angel Report Scala BlitzView

inner Views. This is the result of ++ on
two Views. It inherits BlitzViewImpl.

BlitzViewFlattenVs: The View that con-
tains a list of View and concatenates
the elements together in a single flat-
tened View. When a new transformer is
added, it is passed to every inner Views.
It inherits BlitzViewImpl.

A second important design choice we
made is to use ScalaBlitz2 for the actual
computations. This library offers first-class
collections in terms of performance because
it was designed for efficiency by using par-
allelism and specialized code to avoid un-
necessary boxing. We won’t cover the de-
tails of the internal algorithms but it suf-
fices to say the computations are dynam-
ically spread among the workers according
to the programmer policy. This is the con-
cept of work stealing, which is implemented
in this library; more details can be found in
recent papers [3].
The library itself provides the usual high-

level operations on the major collections we
need (Array, Range, Map and Set). Al-
though we could have used multiple calls
for transformers, then reducers, we de-
cided to extend ScalaBlitz with a new
method (mapFilterReduce) that we used
to implement our internal methods (such as
genericInvoke). This new function com-
bines a flatMap (map and flatten at once)
and a general fold in a single step. In
practice, that means folding a View only re-
quire a single iteration over the underlying
collection, each element is only used once.
This property stays true even as the num-
ber of transformers increase, this won’t be
true for regular collection transformers with-
out optimisation. Moreover, in our design

2Homepage: http://scala-blitz.github.io/

the programmer gains parallelism for free,
this is fully integrated by the use of Scala
Blitz whose algorithm can be configured: by
importing some careful chosen implicits
(which form the context).

4.1 Implicits
An interesting part of Scala API design con-
sists of using implicits methods or values [8].
They can help to augment classes of certain
shapes with more operations and sometimes
they can provide a way to construct values
given a number of possible underlying repre-
sentations. We will now show how we used
both of these two mechanisms to design a flu-
ent and powerful API for the programmer.
The first type augments specific type shape
and is referred as implicit-extensions, while
the latter type, where we construct a class
based on the representation, is referred as
implicit-evidence (like a proof).
In our design implicit-extensions are used

to allows the programmer to flatten a View,
by just calling flatten on it. Even though
there is no such method anywhere in our
public API, the programmer can call it
when it makes sense to do so. The re-
quirement is that the View contains it-
self Views inside and as such there is no
particular class that provides flatten, it’s
just a plain BlitzView[B] where B is the
type of the elements. In this case B
has a special shape: B = BlitzView[C],
and the implicit-extension is triggered when
the user calls flatten. The Scala com-
piler searches for an implicit conversion,
then, provided the requirements are satis-
fied, it’s applied automatically to produce
what we designed: a special hidden class
that has the flatten method, in our case
ViewWithFlatten. To implement such im-
plicit conversion we need an implicit method

June 9, 2014 Page 6 of 11

Axel Angel Report Scala BlitzView

that specifies the constraint and the con-
version (see addFlatten). Then the call
to flatten (now on ViewWithFlatten) re-
turns a special View instance that con-
catenates all its inner Views, in our case
BlitzViewFlattenVs.
The second part with implicit-evidence is

used to create Views, that happens when the
programmer calls bview on any supported
collection. We support an interesting subset
of Scala Blitz collections (see above) but we
decided to evict Lists because they cannot
be used efficiently in a parallel context, and
it’s easy for users to convert them to Array
anyway. We created a “proof-performer”
that, given a suitable evidence, can convert
a collection to a View; here the evidence is
an implicit value (of type IsViewable). The
“proof-performer” is an implicit conversion,
called toViewable. There is at least one ev-
idence per collection we support, each one
requiring an implicit Scala Blitz context (to
decide how to parallelize the collection) and
some requiring an implicit ClassTag (to de-
cide how to pack in Arrays). When applied,
the “proof-performer” returns an ephemeral
instance of Viewable whose sole purpose is
to augment the collection with the bview
method. In practice our “proof-performer”
is called only when the bview method itself
is called, thus the class Viewable is only an
internal detail of our implementation.

5 Usability
We now talk about the programmer’s per-
spective when using our View implementa-
tion: how to create Views, how usual opera-
tions are performed and the extent of possi-
bilities with our prototype.
Let’s first take an example to illustrate the

creation and use of Views:

val xs = (0 to 10). toArray
val v = xs. bview
val u = v.map(_ + 10)

The user already familiar with Scala
built-in Views will notice the similarity:
the only difference is bview instead of
view. One needs to import our package:
collection.views.Scope._ and a Scala
Blitz context3.
The programmer has the guarantee xs will

never be affected by the actions he is per-
forming on the Views, here v or u. Moreover
u is independent of u and both can be used
as many times as needed.
The very nice properties of Views are im-

portant because they increase the possible
use cases. For example Views can be used
with mutable collections (without any spe-
cial treatment): just create a View on an
underlying mutable HashMap for example,
this can be seen as a view in SQL, over
any table (collection) where the View is al-
ways synchronized with the underlying data
changes. In our prototype, the View stays
up to date because the computation is al-
ways done from scratch each time.
import collection . mutable . HashMap
val m = HashMap ((1 ,2))
val v = m. bview .map{ case (x,y) => x+y}
v. toArray // Array (3)
v.sum // 3
m += ((3 ,4))
v. toArray // Array (7, 3)
v.sum // 10

Let’s take a concrete example, let’s say we
have a collection of departments, each con-
taining people. We want to compute the ra-
tio of people having certain properties, like
people over a certain age union4 whose name
begins with an A:
case class Person (n: String , a: Int)
// xs: MSet [(String , MSet [Person])]

3e. g. par.Scheduler.Implicits.sequential
4Note that in our example we use ++ which

counts duplicates twice

June 9, 2014 Page 7 of 11

Axel Angel Report Scala BlitzView

val v = xs.map(_._2. bview). bview . flatten
val vf = v. filter (_.a > 30)

++ v. filter (_.n[0] == ’A’)
vf.size / v.size

There are multiple remarks necessary to
understand the purpose of this code. First
we used MSet, a mutable Set so we can mod-
ify the collection as the number of people
come and go. Second we explicitly require
the programmer to convert inner collections
to Views, which is necessary if the user wants
to flatten the structure; this is to avoid
unnecessary work (for example when the
programmer does not need to use View in-
side) and to avoid problematic implicit con-
versions (some conversions change the type
which wouldn’t be desirable all the time).
Third there is a major difference with the
built-in Scala Views shown here: flatten
does return a View whose inner Views are
flattened, that means the flatten operation
keeps our non-strict semantic; all the other
operations following it (here size) are on the
always-synchronized Views. The program-
mer can continue to update the MSet and
still use v and vf to get the desired result.
Scala Blitz offers different schedulers for

parallelism based on work-stealing such
as Sequential (no parallelism), ForkJoin
(kernel pool), and even the programmer can
create new ones. The scheduler is an implicit
that can be imported or explicitly passed to
the methods of our Views.

6 Extensibility
We now present how a programmer can ex-
tend our hierarchy to create new implemen-
tation or new classes and how well it is inte-
grated seamlessly.
The programmer can create a new class

under BlitzViewImpl that implements a
certain shape of Views. The advantage of

creating a class that inherit our implemen-
tation is there are only two methods to im-
plement:

> >: this method must save the provided
transformer into its state, depending on
the case it should propagate this to the
children Views.

genericInvoke: this method is responsible
for the application of the transformers
followed by the folding. This method is
called by all others in the public API,
this allowed us to keep children classes
very thin where most of the implemen-
tation resides in the common heritage
(BlitzViewImpl).

Then, to use it, the programmer can create a
new implicit-extension if this should be used
for certain shapes of Views.
We take a toy example: let’s imple-

ment a View that contains a single element:
BlitzViewS5. We use BlitzViewC as code
base, having a hidden underlying type A
(for its source) and a transformers stack
transform, and now we need to store a sin-
gle element x (instead of a collection xs).
Our implementation of >> stays the same
whereas genericInvoke needs to only ap-
ply the transform on op (as usual) but on the
single element to return it (we don’t need to
fold here). The trick here is to pass an empty
ResultCell as our folder’s second argument
(it plays the role of an identity element).
We can now create either an implicit-

evidence for the singleton type, for example
an Int:
import collection . views . ViewTransforms ._
implicit def intIsViewable =

new isViewable [Int , Int] {
override apply (i: Int) =

new BlitzViewS [Int] {

5We provide this implementation in the code
repository

June 9, 2014 Page 8 of 11

Axel Angel Report Scala BlitzView

type A = Int
val x = i
def transform = new Identity ()

}
}

The programmer can now write: 5.bview
as expected. There is an other similar im-
plementation, provided as a more interest-
ing example, for Option in BlitzViewO,
this allows the programmer to flatten
BlitzView[Option[T]] like with regular
collections.
Implicits allow the programmer to plug di-

rectly its own classes as first-citizens of our
prototype without changing our prototype.

7 Conclusion
Views are a powerful concepts that can im-
prove the efficiency and productivity when
they are well implemented. The program-
mer can apply multiple transformers consec-
utively, reuse and pass around the interme-
diate Views, fold them multiple times. All
these operations are very efficient because
we use non-strictness, optional and config-
urable parallelism. We limited the scope of
available operations (transformers and fold-
ers) on purpose to the ones that can be effi-
ciently implemented. This may seem very
restrictive but most of the usual methods
on collections are still offered, moreover the
programmer can always switch back to regu-
lar collections and call whatever he wanted,
may it be permutations or dropWhile. In
our current prototype these methods were
not implemented due to the reasons above
but this may change in the future, as this
is more easily done than for built-in Scala
Views. Due to the fact that our prototype is
a separate library, it can make progress on
its own, be updated more regularly and we
avoid the problem of built-in packages: even

with an old version of Scala, one can use our
prototype by just importing it.
An other important aspect of libraries

is the public part, the methods available
to the final programmer. Scala Views de-
cided to stick with the collections API but
it was not designed for non-strict Views, it
resulted in certain undesirable behavior and
unnecessary problems. Additionally, sepa-
rating Scala Views from Parallel Collection
has caused additional confusion as it is often
unclear whether they can or cannot work to-
gether.
One major insight is that generally APIs

cannot be changed without breaking most
of the programmer code, and now Views de-
cided to use the Scala collections API with-
out built-in parallelism. The extent of the
API problem is even wider than before but
hopefully there are multiple ways to improve
the situation: changing the public API and
breaking code (not acceptable for Scala), or
by creating standalone libraries that provide
better APIs by learning from the errors of
the past designs.
The prototype we presented here is a de-

sign that overcomes most of the difficul-
ties that current Views suffer: standalone
and suitable API, lightweight wrappers in
a small codebase, configurable parallelism6

and powerful extensibility using implicits.

7.1 Future work
Future work can start to expand the number
of Views type, the available methods in the
API, generalize to different parallel libraries,
add smart memorization and use macro ex-
pansions aggressively.
Currently our prototype implements cer-
6Our prototype does depend on Scala Blitz but

in such a way it’s easily changeable.

June 9, 2014 Page 9 of 11

Axel Angel Report Scala BlitzView

tain underlying type: C (collections), VV
(concat two Views), FlattenVs (flatten
Views), S (singleton), O (Option). There
is room for improvements by adding more
types, for example generators (functions
that return the elements lazily).
We implemented methods such as

flatMap, map, filter, etc. and there are
still other methods missing in our library
like tail, partition, zip, takeWhile
that may have efficient implementations
in our model. Especially tail that could
be implemented with head with a lazy
reverse operation. partition and zip
can certainly be implemented with a map
followed by a special folder, the tricky part
is the interaction of elements from multiple
Views simultaneously. For methods like
takeWhile, the problem is tricky if we want
an implementation that works efficiently in
parallel, due to the fact that chunks depend
on neighbor results, it may be possible but
it was not in the scope of our prototype.
As we said, our prototype use the paral-

lelism of Scala Blitz by calling certain meth-
ods specialized to the underlying collections.
Our dependency is more explicit than possi-
ble and we could abstract away the informa-
tion to avoid this issue7.
Our current prototype does not cache the

result of the folders nor the folders. Memo-
ization could be trivially added after trans-
former computation for immutable under-
lying collections at the expanse of linear
O(n) memory overhead for our Views and
more complex codebase. With mutable un-
derlying collections, this is trickier as it
can change anytime, there may exist ways
to ask the underlying collection whether it

7We could store the Scheduler but it proved to
be a mistake in other libraries, thus for now the sig-
natures depend on it.

changed, so we could propagate a dirty flag
in our Views. Unfortunately this may not be
possible, moreover it could add unforeseen
issues to our prototype if not well thought8.
Our last proposition for improvement is

macros. They were introduced recently, in
Scala 2.10, to allow metaprogramming, writ-
ing code that generates code at compile-time
without sacrificing modularity [1]. Scala
Blitz use them extensively to propagate
types statically and work on unboxed types
when possible, this has an important im-
pact on performance. We could leverage
macros in our prototype to pass statically
more information to Scala Blitz so it can
create specialized code, thus we would ben-
efit from the maximal performance offered
by its design. Furthermore we could use
macros to simplify consecutive transformers
by inspecting their code to merge them, e. g.
map{_+1}.map{_+1} into map{_+2}. Macros
open up new dimensions of specialized opti-
mization by code inspection.

A Source code
The prototype is available on GitHub,
commit v0.1: https://github.com/
axel-angel/scala-blitzview (with code
samples). We would like to thank Dmitry
Petrashko for his continuous great support,
Martin Weber for proof-reading, Martin
Odersky and the LAMP laboratory for their
inspiring and great researches.

References
[1] Eugene Burmako. Scala macros: let

our powers combine!: on how rich syn-
8This posed some issues in Scala Views because

it is not controllable by the programmer.

June 9, 2014 Page 10 of 11

https://github.com/axel-angel/scala-blitzview
https://github.com/axel-angel/scala-blitzview

Axel Angel Report Scala BlitzView

tax and static types work with metapro-
gramming, 2013.

[2] Rich Hickey. Reducers: Library and
model for collection processing. http:
//clojure.com/blog/2012/05/08/
reducers-a-library-and-model-for-collection-processing.
html, 2012. [Online; 2014-06-04].

[3] Aleksandar Prokopec Tiark Rompf Phil
Bagwell Martin Odersky. A generic
parallel collection framework. Techni-
cal report, EPFL Lausanne, Switzerland,
2010.

[4] Martin Odersky. Scala 2.8 collec-
tions. Technical report, EPFL Lausanne,
Switzerland, 2009.

[5] Martin Odersky. scalax: Parallel
views. https://github.com/odersky/
scalax, 2013. [Online; last commit
6f74549e].

[6] Martin Odersky and al. An overview of
the scala programming language. Techni-
cal Report IC/2004/64, EPFL Lausanne,
Switzerland, 2004.

[7] Martin Odersky and Adriaan Moors.
Fighting bit rot with types, 2009.

[8] Bruno C.d.S. Oliveira, Adriaan Moors,
and Martin Odersky. Type classes as
objects and implicits. SIGPLAN Not.,
45(10):341–360, October 2010.

June 9, 2014 Page 11 of 11

http://clojure.com/blog/2012/05/08/reducers-a-library-and-model-for-collection-processing.html
http://clojure.com/blog/2012/05/08/reducers-a-library-and-model-for-collection-processing.html
http://clojure.com/blog/2012/05/08/reducers-a-library-and-model-for-collection-processing.html
http://clojure.com/blog/2012/05/08/reducers-a-library-and-model-for-collection-processing.html
https://github.com/odersky/scalax
https://github.com/odersky/scalax

	Introduction
	Previous works
	Views
	Design
	Implicits

	Usability
	Extensibility
	Conclusion
	Future work

	Source code

